Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of The American Society for Mass Spectrometry, 2(28), p. 253-262, 2016

DOI: 10.1007/s13361-016-1549-z

Links

Tools

Export citation

Search in Google Scholar

Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks.