Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms13471

Links

Tools

Export citation

Search in Google Scholar

Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAccumulating evidence suggests that transcriptional regulation is required for maintenance of long-term memories (LTMs). Here we characterize global transcriptional and epigenetic changes that occur during LTM storage in the Drosophila mushroom bodies (MBs), structures important for memory. Although LTM formation requires the CREB transcription factor and its coactivator, CBP, subsequent early maintenance requires CREB and a different coactivator, CRTC. Late maintenance becomes CREB independent and instead requires the transcription factor Bx. Bx expression initially depends on CREB/CRTC activity, but later becomes CREB/CRTC independent. The timing of the CREB/CRTC early maintenance phase correlates with the time window for LTM extinction and we identify different subsets of CREB/CRTC target genes that are required for memory maintenance and extinction. Furthermore, we find that prolonging CREB/CRTC-dependent transcription extends the time window for LTM extinction. Our results demonstrate the dynamic nature of stored memory and its regulation by shifting transcription systems in the MBs.