Published in

BioMed Central, Malaria Journal, 1(15), 2016

DOI: 10.1186/s12936-016-1409-0

Links

Tools

Export citation

Search in Google Scholar

Low prevalence of Plasmodium malariae and Plasmodium ovale mono-infections among children in the Democratic Republic of the Congo: a population-based, cross-sectional study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background In an effort to improve surveillance for epidemiological and clinical outcomes, rapid diagnostic tests (RDTs) have become increasingly widespread as cost-effective and field-ready methods of malaria diagnosis. However, there are concerns that using RDTs specific to Plasmodium falciparum may lead to missed detection of other malaria species such as Plasmodium malariae and Plasmodium ovale. Methods Four hundred and sixty six samples were selected from children under 5 years old in the Democratic Republic of the Congo (DRC) who took part in a Demographic and Health Survey (DHS) in 2013–14. These samples were first tested for all Plasmodium species using an 18S ribosomal RNA-targeted real-time PCR; malaria-positive samples were then tested for P. falciparum, P. malariae and P. ovale using a highly sensitive nested PCR. Results The prevalence of P. falciparum, P. malariae and P. ovale were 46.6, 12.9 and 8.3 %, respectively. Most P. malariae and P. ovale infections were co-infected with P. falciparum—the prevalence of mono-infections of these species were only 1.0 and 0.6 %, respectively. Six out of these eight mono-infections were negative by RDT. The prevalence of P. falciparum by the more sensitive nested PCR was higher than that found previously by real-time PCR. Conclusions Plasmodium malariae and P. ovale remain endemic at a low rate in the DRC, but the risk of missing malarial infections of these species due to falciparum-specific RDT use is low. The observed prevalence of P. falciparum is higher with a more sensitive PCR method.