Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Standards in Genomic Sciences, 1(11), 2016

DOI: 10.1186/s40793-016-0183-5

Links

Tools

Export citation

Search in Google Scholar

The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Methane emissions from agriculture represent around 9Â % of global anthropogenic greenhouse emissions. The single largest source of this methane is animal enteric fermentation, predominantly from ruminant livestock where it is produced mainly in their fermentative forestomach (or reticulo-rumen) by a group of archaea known as methanogens. In order to reduce methane emissions from ruminants, it is necessary to understand the role of methanogenic archaea in the rumen, and to identify their distinguishing characteristics that can be used to develop methane mitigation technologies. To gain insights into the role of methylotrophic methanogens in the rumen environment, the genome of a methanogenic archaeon has been sequenced. This isolate, strain ISO4-H5, was isolated from the ovine rumen and belongs to the order Methanomassiliicoccales. Genomic analysis suggests ISO4-H5 is an obligate hydrogen-dependent methylotrophic methanogen, able to use methanol and methylamines as substrates for methanogenesis. Like other organisms within this order, ISO4-H5 does not possess genes required for the first six steps of hydrogenotrophic methanogenesis. Comparison between the genomes of different members of the order Methanomassiliicoccales revealed strong conservation in energy metabolism, particularly in genes of the methylotrophic methanogenesis pathway, as well as in the biosynthesis and use of pyrrolysine. Unlike members of Methanomassiliicoccales from human sources, ISO4-H5 does not contain the genes required for production of coenzyme M, and so likely requires external coenzyme M to survive.