Published in

Elsevier, Chemosphere, (165), p. 453-459, 2016

DOI: 10.1016/j.chemosphere.2016.09.050

Links

Tools

Export citation

Search in Google Scholar

Dissipation of pterosin B in acid soils - tracking the fate of the bracken fern carcinogen ptaquiloside

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bracken ferns (Pteridium spp.) are well-known for their carcinogenic properties, which are ascribed to the content of ptaquiloside and ptaquiloside-like substances. Ptaquiloside leach from the ferns and may cause contamination of drinking water. Pterosin B is formed by hydrolysis of ptaquiloside. In soil, Pterosin B is adsorbed more strongly and it is expected to have a slower turnover than ptaquiloside. We thus hypothesized that pterosin B may serve as an indicator for any past presence of ptaquiloside. Pterosin B degradation was studied in acid forest soils from bracken-covered and bracken-free areas. Soil samples were incubated with pterosin B at 3 and 8 μg g(-1) for 10 days, whereas sterile (autoclaved) samples were incubated for 23 days. Pterosin B showed unexpected fast degradation in soils with full degradation in topsoils in 2-5 days. Pterosin B dissipation followed the sum of two-first order reactions. The initial fast reaction with half-lives of 0.7-3.5 h contributed 11-59% of the total pterosin B degradation, while the slow reaction was 20-100 times slower than the fast reaction. Total dissipation half-lives were shorter for loamy sand (4 h) than for sandy loam soils (28 h). No degradation of pterosin B took place under sterile conditions assuming observed dissipation during the first 3 h could be attributed to irreversible sorption. Our results demonstrate that pterosin B is microbially degraded and that pterosin B is as unstable as ptaquiloside and hence cannot be used as an indicator for former presence of ptaquiloside in soil.