Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Identification of Ixodes ricinus blood meals using an automated protocol with high resolution melting analysis (HRMA) reveals the importance of domestic dogs as larval tick hosts in Italian alpine forests

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Abstract Background In Europe, Ixodes ricinus L. is the main vector of a variety of zoonotic pathogens, acquired through blood meals taken once per stage from a vertebrate host. Defining the main tick hosts in a given area is important for planning public health interventions; however, until recently, no robust molecular methods existed for blood meal identification from questing ticks. Here we improved the time- and cost-effectiveness of an HRMA protocol for blood meal analysis and used it to identify blood meal sources of sheep tick larvae from Italian alpine forests. Methods Nine hundred questing nymphs were collected using blanket-dragging in 18 extensive forests and 12 forest patches close to rural villages in the Province of Trento. Total DNA was either extracted manually, with the QIAamp DNA Investigator kit, or automatically using the KingFisherâ ˘ Flex Magnetic Particle Processors (KingFisher Cell and Tissue DNA Kit). Host DNA was amplified with six independent host group real-time PCR reactions and identified by means of HRMA. Statistical analyses were performed in R to assess the variables important for achieving successful identification and to compare host use in the two types of forest. Results Automating DNA extraction improved time- and cost-effectiveness of the HRMA protocol, but identification success fell to 22.4% (KingFisherâ ˘) from 55.1% (QIAamp), with larval hosts identified in 215 of 848 questing nymphs; 23 mixed blood meals were noted. However, the list of hosts targeted by our primer sets was extended, improving the potential of the method. Host identification to species or genus level was possible for 137 and 102 blood meals, respectively. The most common hosts were Rodentia (28.9%) and, unexpectedly, Carnivora (28.4%), with domestic dogs accounting for 21.3% of all larval blood meals. Overall, Cetartiodactyla species fed 17.2% of larvae. Passeriformes (14.6%) fed a significantly higher proportion of larvae in forest patches (22.3%) than in extensive forest (9.6%), while Soricomorpha (10.9%) were more important hosts in extensive forest (15.2%) than in forest patches (4.3%). Conclusions The HRMA protocol for blood meal analysis is a valuable tool in the study of feeding ecology of sheep ticks, especially with the cost- and time- reductions introduced here. To our knowledge, we show for the first time that domestic dogs are important larval hosts in the Alps, which may have possible implications for tick-borne disease cycles in urbanized areas.