Published in

Wiley, Marine Ecology, 4(37), p. 713-726, 2016

DOI: 10.1111/maec.12371

Links

Tools

Export citation

Search in Google Scholar

Growth rates and ecology of coralline rhodoliths from the Ras Ghamila back reef lagoon, Red Sea

Journal article published in 2016 by Annalisa Caragnano ORCID, Daniela Basso, Graziella Rodondi
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rhodoliths are important marine carbonate producers that provide habitat for several marine organisms, and are threatened by ongoing global climate change. Meter-sized sedimentary patches rich in living rhodoliths, interspersed among corals, were discovered in the back reef of Ras Ghamila lagoon, Southern Sinai, at less than 1 m water depth. In this shallow and relatively sheltered subtropical environment, rhodoliths were found to be monospecific or oligospecific, spheroidal, 3.5 to 9.4 cm in maximum diameter, with warty/lumpy or fruticose (protuberance degree IV) growth forms, and corresponded to the unattached branches or praline type. They grew in bright light under seasonal, moderate, wind-driven water motion. The dominant rhodolith-forming species recorded were: Lithophyllum kotschyanum, Porolithon onkodes, Hydrolithon sp. and three species of Neogoniolithon: Neogoniolithon fosliei, Neogoniolithon brassica-florida, and an undescribed species noted in the text as Neogoniolithon sp. A total of 38 Alizarin-stained rhodoliths was released in the field and collected after 1 year. They showed different banding patterns (alternating long and short cells) that revealed seasonal growth, with the lowest rates occurring in winter for all species, and an additional summer growth slackening in Neogoniolithon fosliei. Lithophyllum kotschyanum presented evidence of occasional growth cessation, possibly due to temporary burial. The observed annual growth rate of rhodoliths was unrelated to their size. The mean accretion rates were 1.08 mm · year−1 in L. kotschyanum, 0.75 mm · year−1 in P. onkodes, 0.49 mm · year−1 in Hydrolithon sp., 0.85 mm mm · year−1 in N. fosliei, 0.63 mm · year−1 in N. brassica-florida and 0.57 mm · year−1 in Neogoniolithon sp. The annual mean marginal elongation rate for these taxa was respectively 8.74, 13.92, 3.59, 9.40 and 9.25 mm · year−1, with the exception of Neogoniolithon sp., for which this parameter was not recorded. Maximum marginal elongation occurred in P. onkodes pointing out its greater ability as a space competitor in comparison with the other rhodolith species. The highest accretion rate and common presence of L. kotschyanum indicate its importance as carbonate producer in tropical reef.