Published in

American Society for Microbiology, Applied and Environmental Microbiology, 2(72), p. 1129-1134, 2006

DOI: 10.1128/aem.72.2.1129-1134.2006

Links

Tools

Export citation

Search in Google Scholar

Engineering Plant-Microbe Symbiosis for Rhizoremediation of Heavy Metals

Journal article published in 2006 by Cindy H. Wu, Thomas K. Wood ORCID, Ashok Mulchandani, Wilfred Chen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The use of plants for rehabilitation of heavy-metal-contaminated environments is an emerging area of interest because it provides an ecologically sound and safe method for restoration and remediation. Although a number of plant species are capable of hyperaccumulation of heavy metals, the technology is not applicable for remediating sites with multiple contaminants. A clever solution is to combine the advantages of microbe-plant symbiosis within the plant rhizosphere into an effective cleanup technology. We demonstrated that expression of a metal-binding peptide (EC20) in a rhizobacterium, Pseudomonas putida 06909, not only improved cadmium binding but also alleviated the cellular toxicity of cadmium. More importantly, inoculation of sunflower roots with the engineered rhizobacterium resulted in a marked decrease in cadmium phytotoxicity and a 40% increase in cadmium accumulation in the plant root. Owing to the significantly improved growth characteristics of both the rhizobacterium and plant, the use of EC20-expressing P. putida endowed with organic-degrading capabilities may be a promising strategy to remediate mixed organic-metal-contaminated sites.