Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1-2(706), p. 13-20

DOI: 10.1016/j.mrfmmm.2010.10.005

Links

Tools

Export citation

Search in Google Scholar

Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 are involved in several pathways central to the carcinogenic process, including regulation of cell growth, insulin, and inflammation. We evaluated genetic variation in their candidate genes to obtain a better understanding of their association with colon and rectal cancer. We used data from two population-based case-control studies of colon (n=1574 cases, 1940 controls) and rectal (n=791 cases, 999 controls) cancer. We observed genetic variation in RPS6KA1, RPS6KA2, and PRS6KB2 were associated with risk of developing colon cancer while only genetic variation in RPS6KA2 was associated with altering risk of rectal cancer. These genes also interacted significantly with other genes operating in similar mechanisms, including Akt1, FRAP1, NFκB1, and PIK3CA. Assessment of tumor markers indicated that these genes and this pathway may importantly contributed to CIMP+ tumors and tumors with KRAS2 mutations. Our findings implicate these candidate genes in the etiology of colon and rectal cancer and provide information on how these genes operate with other genes in the pathway. Our data further suggest that this pathway may lead to CIMP+ and KRAS2-mutated tumors.