Published in

Portland Press, Biochemical Journal, 3(377), p. 665-674, 2004

DOI: 10.1042/bj20030956

Links

Tools

Export citation

Search in Google Scholar

Cystinuria-specific rBAT(R365W) mutation reveals two translocation pathways in the amino acid transporter rBAT-b0,+AT.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Apical reabsorption of dibasic amino acids and cystine in kidney is mediated by the heteromeric amino acid antiporter rBAT/b(0,+)AT (system b(0,+)). Mutations in rBAT cause cystinuria type A, whereas mutations in b(0,+)AT cause cystinuria type B. b(0,+)AT is the catalytic subunit, whereas it is believed that rBAT helps the routing of the rBAT/b(0,+)AT heterodimeric complex to the plasma membrane. In the present study, we have functionally characterized the cystinuria-specific R365W (Arg(365)-->Trp) mutation of human rBAT, which in addition to a trafficking defect, alters functional properties of the b(0,+) transporter. In oocytes, where human rBAT interacts with the endogenous b(0,+)AT subunit to form an active transporter, the rBAT(R365W) mutation caused a defect of arginine efflux without altering arginine influx or apparent affinities for intracellular or extracellular arginine. Transport of lysine or leucine remained unaffected. In HeLa cells, functional expression of rBAT(R365W)/b(0,+)AT was observed only at the permissive temperature of 33 degrees C. Under these conditions, the mutated transporter showed 50% reduction of arginine influx and a similar decreased accumulation of dibasic amino acids. Efflux of arginine through the rBAT(R365W)/b(0,+)AT holotransporter was completely abolished. This supports a two-translocation-pathway model for antiporter b(0,+), in which the efflux pathway in the rBAT(R365W)/b(0,+)AT holotransporter is defective for arginine translocation or dissociation. This is the first direct evidence that mutations in rBAT may modify transport properties of system b(0,+).