Portland Press, Biochemical Journal, 1(377), p. 183-193, 2004
DOI: 10.1042/bj20030815
Full text: Download
In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate spontaneously with bilayers composed of either zwitterionic (phosphatidylcholine) or anionic (phosphatidylglycerol) phospholipids. The peptides show higher affinity for anionic than for zwitterionic membranes. Interaction of the peptides with both zwitterionic and anionic membranes promotes phospholipid vesicle aggregation, and leakage of the aqueous content of the vesicles. The lipid–peptide interaction includes a significant hydrophobic component for both zwitterionic and anionic membranes, although the interaction with phosphatidylglycerol bilayers is also electrostatic in nature. The effects of the SP-C N-terminal peptides on the membrane structure are mediated by significant perturbations of the packing order and mobility of phospholipid acyl chain segments deep in the bilayer, as detected by differential scanning calorimetry and spin-label ESR. These results suggest that the N-terminal region of SP-C, even in the absence of acylation, possesses an intrinsic propensity to interact with and perturb phospholipid bilayers, thereby potentially facilitating SP-C promoting bilayer-monolayer transitions at the alveolar spaces.