Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Year Book of Dermatology and Dermatologic Surgery, (2007), p. 87-88

DOI: 10.1016/s0093-3619(08)70379-4

American Society for Clinical Investigation, Journal of Clinical Investigation, 5(116), p. 1243-1253

DOI: 10.1172/jci27186

Links

Tools

Export citation

Search in Google Scholar

Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inflammatory skin disorders result in significant epidermal changes, including keratinocyte hyperproliferation, incomplete differentiation, and impaired barrier. Here we test whether, conversely, an impaired epidermal barrier can promote an inflammatory response. Mice lacking the transcription factor Kruppel-like factor 4 (Klf4) have a severe defect in epidermal barrier acquisition. Transcription profiling of Klf4(-/-) newborn skin revealed similar changes in gene expression to involved psoriatic plaques, including a significant upregulation of the gap junction protein connexin 26 (Cx26). Ectopic expression of Cx26 from the epidermis-specific involucrin (INV) promoter (INV-Cx26) demonstrated that downregulation of Cx26 is required for barrier acquisition during development. In juvenile and adult mice, persistent Cx26 expression kept wounded epidermis in a hyperproliferative state, blocked the transition to remodeling, and led to an infiltration of immune cells. Mechanistically, ectopic expression of Cx26 in keratinocytes resulted in increased ATP release, which delayed epidermal barrier recovery and promoted an inflammatory response in resident immune cells. These results provide a molecular link between barrier acquisition in utero and epidermal remodeling after wounding. More generally, these studies suggest that the most effective treatments for inflammatory skin disorders might concomitantly suppress the immune response and enhance epidermal differentiation to restore the barrier.