Published in

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

DOI: 10.1109/cvpr.2017.622

Links

Tools

Export citation

Search in Google Scholar

Richer Convolutional Features for Edge Detection

Proceedings article published in 2016 by Yun Liu, Ming Cheng ORCID, Xiaowei Hu, Kai Wang, Xiang Bai
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, we propose an accurate edge detector using richer convolutional features (RCF). Since objects in nature images have various scales and aspect ratios, the automatically learned rich hierarchical representations by CNNs are very critical and effective to detect edges and object boundaries. And the convolutional features gradually become coarser with receptive fields increasing. Based on these observations, our proposed network architecture makes full use of multiscale and multi-level information to perform the image-to-image edge prediction by combining all of the useful convolutional features into a holistic framework. It is the first attempt to adopt such rich convolutional features in computer vision tasks. Using VGG16 network, we achieve \sArt results on several available datasets. When evaluating on the well-known BSDS500 benchmark, we achieve ODS F-measure of \textbf{.811} while retaining a fast speed (\textbf{8} FPS). Besides, our fast version of RCF achieves ODS F-measure of \textbf{.806} with \textbf{30} FPS.