Published in

American Chemical Society, Chemistry of Materials, 6(29), p. 2459-2465, 2016

DOI: 10.1021/acs.chemmater.6b03669

Links

Tools

Export citation

Search in Google Scholar

Sn(II)-containing phosphates as optoelectronic materials

Journal article published in 2016 by Qiaoling Xu, Yuwei Li, Lijun Zhang, Weitao Zheng, David J. Singh, Yanming Ma ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We theoretically investigate Sn(II) phosphates as optoelectronic materials using first principles calculations. We focus on known prototype materials Sn$_n$P$_2$O$_{5+n}$ (n=2, 3, 4, 5) and a previously unreported compound, SnP$_2$O$_6$ (n=1), which we find using global optimization structure prediction. The electronic structure calculations indicate that these compounds all have large band gaps above 3.2 eV, meaning their transparency to visible light. Several of these compounds show relatively low hole effective masses ($∼$2-3 m$_0$), comparable the electron masses. This suggests potential bipolar conductivity depending on doping. The dispersive valence band-edges underlying the low hole masses, originate from the anti-bonding hybridization between the Sn 5s orbitals and the phosphate groups. Analysis of structure-property relationships for the metastable structures generated during structure search shows considerable variation in combinations of band gap and carrier effective masses, implying chemical tunability of these properties. The unusual combinations of relatively high band gap, low carrier masses and high chemical stability suggests possible optoelectronic applications of these Sn(II) phosphates, including p-type transparent conductors. Related to this, calculations for doped material indicate low visible light absorption, combined with high plasma frequencies. ; Comment: 10 pages, 10 figures, Supplementary information