Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, BBA - General Subjects, 1(1861), p. 3474-3489

DOI: 10.1016/j.bbagen.2016.09.013

Links

Tools

Export citation

Search in Google Scholar

Study of DNA binding and bending by Bacillus subtilis GabR, a PLP-dependent transcription factor

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: GabR is a transcriptional regulator belonging to the MocR/GabR family, characterized by a N-terminal wHTH DNA-binding domain and a C-terminal effector binding and/or oligomerization domain, structurally homologous to aminotransferases (ATs). In the presence of γ-aminobutyrate (GABA) and pyridoxal 5'-phosphate (PLP), GabR activates the transcription of . gabT and . gabD genes involved in GABA metabolism. Methods: Here we report a biochemical and atomic force microscopy characterization of . Bacillus subtilis GabR in complex with DNA. Complexes were assembled . in vitro to study their stoichiometry, stability and conformation. Results: The fractional occupancy of the GabR cognate site suggests that GabR binds as a dimer with . Kd of 10. nM. Upon binding GabR bends the DNA by 80° as measured by anomalous electrophoretic mobility. With GABA we observed a decrease in affinity and conformational rearrangements compatible with a less compact nucleo-protein complex but no changes of the DNA bending angle. By employing promoter and GabR mutants we found that basic residues of the positively charged groove on the surface of the AT domain affect DNA affinity. Conclusions: The present data extend current understanding of the GabR-DNA interaction and the effect of GABA and PLP. A model for the GabR-DNA complex, corroborated by a docking simulation, is proposed. General Significance: Characterization of the GabR DNA binding mode highlights the key role of DNA bending and interactions with bases outside the canonical direct repeats, and might be of general relevance for the action mechanism of MocR transcription factors.