Published in

American Institute of Physics, The Journal of Chemical Physics, 14(125), p. 144701

DOI: 10.1063/1.2354468

Links

Tools

Export citation

Search in Google Scholar

Hole localization in Al doped silica: A DFT+U description

Journal article published in 2006 by Michael Nolan ORCID, Graeme William Watson
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Despite density functional theory (DFT) being the most widely used ab initio approach for studying the properties of oxide materials, the modeling of localized hole states in doped or defective oxides can be a challenge. The electronic hole formed when silica is doped with aluminum is such a defect, for which a DFT description of the atomic and electronic structures has previously been found to be inconsistent with experiment, while Hartree-Fock provides a consistent description. We have applied the DFT+U approach to this problem and find that the structural distortions around the dopant are consistent with experimental data as well as earlier cluster calculations using Hartree-Fock and perturbation theory. A hole state is found 1.1 eV (1.6 eV experimentally) above the top of the valence band with localization of spin on the oxygen atom which shows the elongated Al-O distance. A formation energy of 5.7 eV is found. We discuss implications for using DFT+U to model defective oxide systems with O 2p holes. ; PUBLISHED ; We acknowledge support for this work from the Donors of the Petroleum Research Fund administered by the Ameri- can Chemical Society and Science Foundation Ireland Grant No. 04/BR/C0216 . We acknowledge the Trinity Centre for High Performance Computing for access to the TCHPC com- putational facilities through the IITAC project, funded by the HEA PRTLI cycle 3