Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Journal of Scheduling, 6(11), p. 405-419

DOI: 10.1007/s10951-008-0073-9

Links

Tools

Export citation

Search in Google Scholar

A multi-objective evolutionary algorithm to exploit the similarities of resource allocation problems

Journal article published in 2008 by Dilip Datta, Carlos M. Fonseca ORCID, Kalyanmoy Deb
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The complexity of a resource allocation problem (RAP) is usually NP-complete, which makes an exact method inadequate to handle RAPs, and encourages heuristic techniques to this class of problems for obtaining approximate solutions in polynomial time. Different heuristic techniques have already been investigated for handling various RAPs. However, since the properties of an RAP can help in characterizing other RAPs, instead of individual solution techniques, the similarities of different RAPs might be exploited for developing a common solution technique for them. Two RAPs of quite different nature, namely university class timetabling and land-use management, are considered here for such a study. The similarities between the problems are first explored, and then a common multi-objective evolutionary algorithm (a kind of heuristic techniques) for them is developed by exploiting those similarities. The algorithm is problem-dependent to some extent and can easily be extended to other similar RAPs. In the present work, the algorithm is applied to two real instances of the considered problems, and its properties are derived from the obtained results.