Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Antennas and Propagation, 5(64), p. 1907-1917, 2016

DOI: 10.1109/tap.2016.2535100

Links

Tools

Export citation

Search in Google Scholar

Polarimetric distance-dependent models for large hall scenarios

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A comprehensive polarimetric distance-dependent model of the power delay profile (PDP) and path gain is proposed. The model includes both specular multipath components (SMCs) and dense multipath components (DMC), the latter being modeled with an exponential and power law. The parameters of the model were estimated from polarimetric measurements of a large hall radio channel under line-of-sight (LOS) conditions at 1.3 GHz with a dedicated procedure. The validity and robustness of the proposed approach are provided by the good agreement between the polarimetric data and models for the investigated transmitter-receiver distance range. Furthermore, the description of the radio channel with path loss models is discussed for cases where the DMC is included, and a two-step method to compute the path loss characteristics directly from the measured data is developed. The results of this contribution highlight the fact that a complete polarimetric description of all propagation mechanisms and related path loss models is desired to design faithful polarimetric radio channel models.