Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Instrumentation and Measurement, 9(65), p. 2137-2144, 2016

DOI: 10.1109/tim.2016.2571518

Links

Tools

Export citation

Search in Google Scholar

Electrical Characterization of PEDOT:PSS Strips Deposited by Inkjet Printing on Plastic Foil for Sensor Manufacturing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inkjet printing is a viable method for rapid and low-cost manufacturing of flexible sensors. In this paper, we study a technique for inkjet printing of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) strips. A low-cost inkjet desktop printer is used for the fabrication of PEDOT: PSS resistive strips on polyimide substrates. Accounting for several geometries of printed PEDOT: PSS strips, we assess the variability of the fabrication process. Owing to the printing process, we can easily choose the width, length, and thickness. We found that printed strips on polyimide foils show a conductivity equal to 115 S/cm, which linearly increases with the strip thickness. The maximum variability is lower than 13%. The frequency analysis shows a purely resistive impedance in the frequency range investigated (100 Hz-100 kHz). Moreover, the strips folded up to 1000 times shows a resistance variation lower than 6%. The study demonstrates that inkjet printing is a viable method for the simple, fast, reliable, and low-cost fabrication of PEDOT:PSS-based sensors on plastic substrates and circuit interconnections.