Published in

Elsevier, The American Journal of Pathology, 6(168), p. 2027-2035, 2006

DOI: 10.2353/ajpath.2006.050932

Links

Tools

Export citation

Search in Google Scholar

TR3 Nuclear Orphan Receptor Prevents Cyclic Stretch-Induced Proliferation of Venous Smooth Muscle Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In coronary artery bypass surgery, the patency of arterial grafts is higher than that of venous grafts because of vein-graft disease, which involves excessive proliferation of venous smooth muscle cells (SMCs) and subsequent accelerated atherosclerosis. We studied the function of TR3 nuclear orphan receptor (TR3) in the early response of SMCs to mechanical strain, a major initiator of vein-graft disease. We demonstrate that TR3 expression is induced in human saphenous vein segments exposed ex vivo to whole-blood perfusion under arterial pressure. Cultured venous SMCs challenged by cyclic stretch displayed TR3 induction and enhanced DNA synthesis, whereas SMCs derived from the internal mammary artery remained quiescent. Small-interfering RNA-mediated knockdown of TR3 and adenovirus-mediated overexpression of TR3 in venous SMCs enhanced and abolished stretch-induced DNA synthesis, respectively. Accordingly, in organ cultures of wild-type murine vessel segments exposed to cyclic stretch, p27(Kip1) was down-regulated, whereas expression of this cell cycle inhibitor was unaffected by cyclic stretch in TR3-transgenic vessels, concordant with a lower proliferative response. Finally, stretch-mediated proliferation was inhibited by 6-mercaptopurine, an agonist of TR3. In conclusion, TR3 represents inhibitory mechanisms to restrict venous SMC proliferation and may contribute to prevention of vein-graft disease.