Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, EMBO Molecular Medicine, 9(8), p. 1039-1051, 2016

DOI: 10.15252/emmm.201506164

Links

Tools

Export citation

Search in Google Scholar

Prolonged contact with dendritic cells turns lymph node-resident NK cells into anti-tumor effectors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Natural killer (NK) cells are critical players against tumors. The outcome of anti‐tumor vaccination protocols depends on the efficiency of NK‐cell activation, and efforts are constantly made to manipulate them for immunotherapeutic approaches. Thus, a better understanding of NK‐cell activation dynamics is needed. NK‐cell interactions with accessory cells and trafficking between secondary lymphoid organs and tumoral tissues remain poorly characterized. Here, we show that upon triggering innate immunity with lipopolysaccharide (LPS), NK cells are transiently activated, leave the lymph node, and infiltrate the tumor, delaying its growth. Interestingly, NK cells are not actively recruited at the draining lymph node early after LPS administration, but continue their regular homeostatic turnover. Therefore, NK cells resident in the lymph node at the time of LPS administration become activated and exert anti‐tumor functions. NK‐cell activation correlates with the establishment of prolonged interactions with dendritic cells (DCs) in lymph nodes, as observed by two‐photon microscopy. Close DC and NK‐cell contacts are essential for the localized delivery of DC‐derived IL‐18 to NK cells, a strict requirement in NK‐cell activation.