Published in

American Journal of Science, American Journal of Science, 7(314), p. 1104-1139, 2014

DOI: 10.2475/07.2014.02

Links

Tools

Export citation

Search in Google Scholar

The Jabal Akhdar Dome in the Oman Mountains: Evolution of a Dynamic Fracture System

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The Mesozoic succession of the Jabal Akhdar dome in the Oman Mountains hosts complex networks of fractures and veins in carbonates, which are a clear example of dynamic fracture opening and sealing in a highly overpressured system. The area underwent several tectonic events during the Late Cretaceous and Cenozoic, including the obduction of the Samail ophiolite and Hawasina nappes, followed by uplift and compression due to the Arabia-Eurasia convergence. This study presents the results of an extensive tectonic survey, and correlates subseismic-scale structures in Jabal Akhdar (faults, fractures, veins and stylolites) with the main tectonic events in the Northeastern Arabian plate. As some of the studied formations host large oil reserves in neighboring areas, determining the relative timing of these events in the exhumed rocks is important to understand hydrocarbon distribution and fracture patterns in these reservoirs. The formation of early veins and stylolites in the Oman Mountains is followed by top-to-the-South layer-parallel shearing that may be associated with the obduction of the Samail and Hawasina nappes. This compressional tectonic event is followed by normal (dip-slip) to oblique-slip faults and veins. Top-to-the-Northeast layer-parallel shearing, which corresponds to the first stage of exhumation of the autochthonous rocks offsets these structures. Our new data indicate that this first phase of events is overprinted by complex strike-slip networks of veins and fractures, as well as by the reactivation and onset of seismic-scale faults. Strike slip structures belong to three distinct events. The first one (NW-SE-oriented compression) is probably associated with the oblique collision of the Indian plate against the Arabian platform during the Late Campanian to the Mid Eocene. The second event (E-W-oriented compression) is likely to have been formed during the Late Oligocene-Middle Miocene during uplift. The last event (NE-SW-oriented compression) probably took place during the Miocene-Pliocene. Structures of the first two strike-slip events have the same orientation as seismic-scale faults observed in the subsurface of Oman and Abu Dhabi. In addition, increasing vein intensity towards the top of the autochthonous formations in the Oman mountains, as well as the small angle between conjugate vein sets, indicate that high fluid pressures that are thought to be present during strike-slip deformation.