Published in

De Gruyter, Wood Research and Technology, 2(64), 2010

DOI: 10.1515/hf.2010.024

Links

Tools

Export citation

Search in Google Scholar

Towards improved understanding of PEG-impregnated waterlogged archaeological wood: A model study on recent oak

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

To prevent deformation and cracking of waterlogged archaeological wood, polyethylene glycol (PEG) as a bulk impregnation agent is commonly applied. PEG maintains the wood in a swollen state during drying. However, swelling of wood can reduce its mechanical properties. In this study, the cellular structure of oak and cell wall swelling was characterized by scanning electron microscopy (SEM) of transverse cross-sections, and the microfibril angle of oak fibers was determined by wide angle X-ray scattering (WAXS). Samples of recent European oak (Quercus robur L) impregnated with PEG (molecular weight of 600) were tested in axial tension and radial compression. Mechanical tests showed that axial tensile modulus and strength were only slightly affected by PEG, whereas radial compressive modulus and yield strength were reduced by up to 50%. This behavior can be explained by the microstructure and deformation mechanisms of the material. Microfibril angles in tensile test samples were close to zero. This implies tensile loading of cellulose microfibrils within the fiber cell walls without almost any shear in the adjacent amorphous matrix. These results are important because they can help separate the impact of PEG on mechanical properties from that of chemical degradation in archaeological artifacts, which display only small to moderate biological degradation. ; To prevent deformation and cracking of waterlogged archaeological wood, polyethylene glycol (PEG) as a bulk impregnation agent is commonly applied. PEG maintains the wood in a swollen state during drying. However, swelling of wood can reduce its mechanical properties. In this study, the cellular structure of oak and cell wall swelling was characterized by scanning electron microscopy (SEM) of transverse cross-sections, and the microfibril angle of oak fibers was determined by wide angle X-ray scattering (WAXS). Samples of recent European oak (Quercus robur L) impregnated with PEG (molecular weight of 600) were tested in axial tension and radial compression. Mechanical tests showed that axial tensile modulus and strength were only slightly affected by PEG, whereas radial compressive modulus and yield strength were reduced by up to 50%. This behavior can be explained by the microstructure and deformation mechanisms of the material. Microfibril angles in tensile test samples were close to zero. This implies tensile loading of cellulose microfibrils within the fiber cell walls without almost any shear in the adjacent amorphous matrix. These results are important because they can help separate the impact of PEG on mechanical properties from that of chemical degradation in archaeological artifacts, which display only small to moderate biological degradation.