Published in

SpringerOpen, ROBOMECH Journal, 1(3), 2016

DOI: 10.1186/s40648-016-0061-3

Links

Tools

Export citation

Search in Google Scholar

Musculoskeletal lower‑limb robot driven by multifilament muscles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This paper presents a redundant musculoskeletal robot using thin McKibben muscles that is based on human anatomy. The purpose of this robot is to achieve motions and characteristics that are very similar to a human body. We use a thin McKibben muscle, which is compliant and flexible, as the actuator of a musculoskeletal robot. Using a bundle of thin McKibben muscles, we develop a multifilament muscle that has characteristics similar to those of human muscles. In contrast, the actuators of conventional musculoskeletal robots are very heavy, not densely attached and have poor backdrivability. Because multifilament muscles are light and can be densely attached, we can attach them to the musculoskeletal robot as skeletal muscle and achieve a redundant system that is equivalent to a human drive mechanism. In this paper, we report a method for fabricating multifilament muscles that imitate various muscles, the development of a lower-limb muscle mechanism for the redundant musculoskeletal robot with thin McKibben muscles and experimental results showing that the proposed musculoskeletal robot achieves humanlike motions that have not yet been reported for other robots.