Published in

The Royal Society, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2081(374), p. 20160076, 2016

DOI: 10.1098/rsta.2016.0076

Links

Tools

Export citation

Search in Google Scholar

Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Philosophical Transactions of the Royal Society A 374 (2016): 20160076, doi:10.1098/rsta.2016.0076. ; Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3–23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean. ; This paper would not have been possible without the financial support of a number of national funding agencies (US NSF OCE-1458305 to M.A.C.; US NSF OCE-0963026 to P.J.L.; Korea NRF-2013R1A1A1058203 to E.Y.K.; U.K. NERC NE/G016267/1 to M.C.L. and A.M.; U.K. NERC NE/K009532/1 to W.B.H.)