Published in

EDP Sciences, Astronomy & Astrophysics, (599), p. A98, 2017

DOI: 10.1051/0004-6361/201629862

Links

Tools

Export citation

Search in Google Scholar

The anatomy of the Orion B Giant Molecular Cloud: A local template for studies of nearby galaxies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We aim to develop the Orion B Giant Molecular Cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. We use the wide-band receiver at the IRAM-30m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26" resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Among the mapped spectral lines are the 12CO, 13CO, C18O, C17O, HCN, HNC, 12CN, CCH, HCO+, N2H+ (1-0), and 12CS, 32SO, SiO, c-C3H2, CH3OH (2-1) transitions. We introduce the molecular anatomy of the Orion B GMC, including relations between line intensities and gas column density or far-UV radiation fields, and correlations between selected line and line ratios. We also obtain a dust-traced gas mass that is less than about one third the CO-traced mass, using the standard Xco conversion factor. The presence of overluminous CO can be traced back to the dependence of the CO intensity on UV illumination. In fact, while most lines show some dependence on the UV radiation field, CN and CCH are the most sensitive. Moreover dense cloud cores are almost exclusively traced by N2H+. Other traditional high density tracers, such as HCN (1-0), are also easily detected in extended translucent regions at a typical density of about 500 H2 cm-3. In general, we find no straightforward relation between line critical density and the fraction of the line luminosity coming from dense gas regions. Our initial findings demonstrate that the relations between line (ratio) intensities and environment in GMCs are more complicated than often assumed. Sensitivity (i.e., the molecular column density), excitation, and above all chemistry contribute to the observed line intensity distributions. They must be considered together when developing the next generation of extra-galactic molecular line diagnostics of mass, density, temperature and radiation field.