Published in

BioMed Central, BMC Medical Imaging, 1(16), 2016

DOI: 10.1186/s12880-016-0162-8

Links

Tools

Export citation

Search in Google Scholar

Kinematic analysis of diastolic function using the freely available software Echo E-waves – feasibility and reproducibility

Journal article published in 2016 by Martin G. Sundqvist, Katrin Salman, Per Tornvall, Martin Ugander ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Early diastolic left ventricular (LV) filling can be accurately described using the same methods used in classical mechanics to describe the motion of a loaded spring as it recoils, a validated method also referred to as the Parameterized Diastolic Filling (PDF) formalism. With this method, each E-wave recorded by pulsed wave (PW) Doppler can be mathematically described in terms of three constants: LV stiffness ( k ), viscoelasticity ( c ), and load ( x 0 ). Also, additional parameters of physiological and diagnostic interest can be derived. An efficient software application for PDF analysis has not been available. We aim to describe the structure, feasibility, time efficiency and intra-and interobserver variability for use of such a solution, implemented in Echo E-waves, a freely available software application ( www.echoewaves.org ). Results An application was developed, with the ability to open DICOM files from different vendors, as well as rapid semi-automatic analysis and export of results. E-waves from 20 patients were analyzed by two investigators. Analysis time for a median of 34 (interquartile range (IQR) 29–42) E-waves per patient (representing 63 %, IQR 56–79 % of the recorded E-waves per patient) was 4.3 min (IQR 4.0–4.6 min). Intra-and intraobserver variability was good or excellent for 12 out of 14 parameters (coefficient of variation 2.5–18.7 %, intraclass correlation coefficient 0.80–0.99). Conclusion Kinematic analysis of diastolic function using the PDF method for Doppler echocardiography implemented in freely available semiautomatic software is highly feasible, time efficient, and has good to excellent intra-and interobserver variability.