Published in

BioMed Central, BMC Evolutionary Biology, 1(16), 2016

DOI: 10.1186/s12862-016-0801-2

Links

Tools

Export citation

Search in Google Scholar

Why and how genetic canalization evolves in gene regulatory networks

Journal article published in 2016 by Estelle Rünneburger, Estelle RĂźnneburger, Arnaud Le Rouzic ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Genetic canalization reflects the capacity of an organismâ s phenotype to remain unchanged in spite of mutations. As selection on genetic canalization is weak and indirect, whether or not genetic canalization can reasonably evolve in complex genetic architectures is still an open question. In this paper, we use a quantitative model of gene regulatory network to describe the conditions in which substantial canalization is expected to emerge in a stable environment. Results Through an individual-based simulation framework, we confirmed that most parameters associated with the network topology (complexity and size of the network) have less influence than mutational parameters (rate and size of mutations) on the evolution of genetic canalization. We also established that selecting for extreme phenotypic optima (nil or full gene expression) leads to much higher canalization levels than selecting for intermediate expression levels. Overall, constrained networks evolve less canalization than networks in which some genes could evolve freely (i.e. without direct stabilizing selection pressure on gene expression). Conclusions Taken together, these results lead us to propose a two-fold mechanism involved in the evolution of genetic canalization in gene regulatory networks: the shrinkage of mutational target (useless genes are virtually removed from the network) and redundancy in gene regulation (so that some regulatory factors can be lost without affecting gene expression).