Published in

Elsevier, Journal of Biological Chemistry, 43(291), p. 22618-22629, 2016

DOI: 10.1074/jbc.m116.739250

Links

Tools

Export citation

Search in Google Scholar

Small heat-shock proteins prevent a-synuclein aggregation via transient interactions and their efficacy is affected by the rate of aggregation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aggregation of a-synuclein (a-syn) into amyloid fibrils is associated with neurodegenerative diseases, collectively referred to as the a-synucleinopathies. In vivo, molecular chaperones, such as the small heat-shock proteins (sHsps), normally act to prevent protein aggregation; however, it remains to be determined how aggregation-prone a-syn evades sHsp chaperone action leading to its disease-associated deposition. This work examines the molecular mechanism by which two canonical sHsps, aB-crystallin (aB-c) and Hsp27, interact with aggregation-prone a-syn to prevent its aggregation in vitro. Both sHsps are very effective inhibitors of ¿-syn aggregation, but no stable complex between the sHsps and a-syn was detected, indicating that the sHsps inhibit a-syn aggregation via transient interactions. Moreover, the ability of these sHsps to prevent a-syn aggregation was dependent on the kinetics of aggregation; the faster the rate of aggregation (shorter the lag phase), the less effective the sHsps were at inhibiting fibril formation of a-syn. Thus, these findings indicate that the rate at which a-syn aggregates in cells may be a significant factor in how it evades sHsp chaperone action in the a-synucleinopathies.