Published in

MDPI, International Journal of Molecular Sciences, 8(17), p. 1254, 2016

DOI: 10.3390/ijms17081254

Links

Tools

Export citation

Search in Google Scholar

Pharmacological activities of ruthenium complexes related to their NO scavenging properties

Journal article published in 2016 by Anna Castellarin, Sonia Zorzet, Alberta Bergamo, Gianni Sava ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Angiogenesis is considered responsible for the growth of primary tumours and of their metastases. With the present study, the effects of three ruthenium compounds, potassiumchlorido (ethylendiamminotetraacetate)rutenate(III) (RuEDTA), sodium (bis-indazole)tetrachloro-ruthenate(III), Na[trans-RuCl₄Ind₂] (KP1339) and trans-imidazoledimethylsulphoxidetetrachloro-ruthenate (NAMI-A), are studied in vitro in models mimicking the angiogenic process. The ruthenium compounds reduced the production and the release of nitrosyls from either healthy macrophages and immortalized EA.hy926 endothelial cells. The effects of NAMI-A are qualitatively similar and sometimes quantitatively superior to those of RuEDTA and KP1339. NAMI-A reduces the production and release of nitric oxide (NO) by the EA.hy926 endothelial cells and correspondingly inhibits their invasive ability; it also strongly inhibits the angiogenesis in matrigel sponges implanted subcutaneously in healthy mice. Taken together, these data support the anti-angiogenic activity of the tested ruthenium compounds and they contribute to explain the selective activity of NAMI-A against solid tumour metastases, the tumour compartment on which angiogenesis is strongly involved. This anti-angiogenic effect may also contribute to the inhibition of the release of metastatic cells from the primary tumour. Investigations on the anti-angiogenic effects of NAMI-A at this level will increase knowledge of its pharmacological properties and it will give a further impulse to the development of this class of innovative metal-based drugs.