Published in

2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)

DOI: 10.1109/optim.2014.6850949

Links

Tools

Export citation

Search in Google Scholar

Comparative analysis of the selective resonant LCL and LCL plus trap filters

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper two promising LCL based filter topologies are evaluated against the well-known LCL with a damping resistor. The filters are designed for high power applications where the frequency modulation index is relatively low. The first topology is the selective resonant LCL filter which aim is to minimize the damping losses by bypassing the resistor at the fundamental and switching frequencies while preserving high attenuation at higher frequencies. A new design procedure is proposed for the selective resonant LCL filter. The presence of multi-tuned traps in the second topology aims to decrease the total size of the filter reactive elements while meeting current harmonic standards. It is found that selective resonant LCL filter provide much lower damping losses compared to the LCL filter with simple resistor topology. Additionally, for the trap topology a minimum switching frequency is determined which ensure that reduction in size of the filter is possible. The theoretical analysis is demonstrated by frequency analysis and time domain simulations.