Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Evolutionary Computation, 1(22), p. 129-142, 2018

DOI: 10.1109/tevc.2016.2622301

Links

Tools

Export citation

Search in Google Scholar

A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We propose a surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed evolutionary algorithm for many-objective optimization that relies on a set of adaptive reference vectors for selection. The proposed surrogateassisted evolutionary algorithm uses Kriging to approximate each objective function to reduce the computational cost. In managing the Kriging models, the algorithm focuses on the balance of diversity and convergence by making use of the uncertainty information in the approximated objective values given by the Kriging models, the distribution of the reference vectors as well as the location of the individuals. In addition, we design a strategy for choosing data for training the Kriging model to limit the computation time without impairing the approximation accuracy. Empirical results on comparing the new algorithm with the state-of-the-art surrogate-assisted evolutionary algorithms on a number of benchmark problems demonstrate the competitiveness of the proposed algorithm.