Institute of Electrical and Electronics Engineers, IEEE Transactions on Evolutionary Computation, 1(22), p. 129-142, 2018
DOI: 10.1109/tevc.2016.2622301
Full text: Download
We propose a surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed evolutionary algorithm for many-objective optimization that relies on a set of adaptive reference vectors for selection. The proposed surrogateassisted evolutionary algorithm uses Kriging to approximate each objective function to reduce the computational cost. In managing the Kriging models, the algorithm focuses on the balance of diversity and convergence by making use of the uncertainty information in the approximated objective values given by the Kriging models, the distribution of the reference vectors as well as the location of the individuals. In addition, we design a strategy for choosing data for training the Kriging model to limit the computation time without impairing the approximation accuracy. Empirical results on comparing the new algorithm with the state-of-the-art surrogate-assisted evolutionary algorithms on a number of benchmark problems demonstrate the competitiveness of the proposed algorithm.