Published in

Association for Research in Vision and Ophthalmology, Journal of Vision, 10(11), p. 6-6

DOI: 10.1167/11.10.6

Links

Tools

Export citation

Search in Google Scholar

Temporal dynamics of encoding, storage, and reallocation of visual working memory

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It was recently shown that expert face perception relies on the extraction of horizontally oriented visual cues. Pictureplane inversion was found to eliminate horizontal, suggesting that this tuning contributes to the specificity of face processing. The present experiments sought to determine the spatial frequency (SF) scales supporting the horizontal tuning of face perception. Participants were instructed to match upright and inverted faces that were filtered both in the frequency and orientation domains. Faces in a pair contained horizontal or vertical ranges of information in low, middle, or high SF (LSF, MSF, or HSF). Our findings confirm that upright (but not inverted) face perception is tuned to horizontal orientation. Horizontal tuning was the most robust in the MSF range, next in the HSF range, and absent in the LSF range. Moreover, face inversion selectively disrupted the ability to process horizontal information in MSF and HSF ranges. This finding was replicated even when task difficulty was equated across orientation and SF at upright orientation. Our findings suggest that upright face perception is tuned to horizontally oriented face information carried by intermediate and high SF bands. They further indicate that inversion alters the sampling of face information both in the orientation and SF domains.