Published in

American Chemical Society, ACS Applied Materials and Interfaces, 39(8), p. 26198-26206, 2016

DOI: 10.1021/acsami.6b06414

Links

Tools

Export citation

Search in Google Scholar

Flexible Photodiodes Based on Nitride Core/Shell p-n Junction Nanowires

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane trans- ferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p−n junction nanowires containing InGaN/ GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The −3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications.