Published in

Elsevier, International Journal of Heat and Fluid Flow, (61), p. 68-74, 2016

DOI: 10.1016/j.ijheatfluidflow.2016.05.009

Links

Tools

Export citation

Search in Google Scholar

Experimental and numerical investigation of a strongly-forced precessing cylinder flow

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Planar particle image velocimetry (PIV) and direct numerical simulations (DNS) of the flow in a precess- ing cylinder of height-to-radius ratio of 1.835 are presented for a nutation angle of 15° and a Reynolds number 6430 based on the cylinder’s angular frequency. We find excellent agreement in terms of time-averaged velocity profiles and Kelvin mode amplitudes during the initial development and in the asymp- totic state. In the experiment, a rapid transition to a disordered state follows a brief appearance of azimuthal structures with a predominant wavenumber m=9. In the DNS, the transition occurs later than in the experiment, and shows dominance of a triad of azimuthal wavenumbers m=1, 4, 5 during the transient evolution. Adding a small random perturbation to the simulation after the forced mode is established accelerates transition to flow dominated by m=9 which eventually transitions to a disordered state, consistent with observations from PIV. The breaking of rotoreflection (inversion) symmetry of the system is found to be critical in establishing evolution paths to the disordered and asymmetric asymptotic state.