Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Information Forensics and Security, 4(12), p. 767-778, 2017

DOI: 10.1109/tifs.2016.2615853

Links

Tools

Export citation

Search in Google Scholar

Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record. ; Remote data integrity checking (RDIC) enables a data storage server, such as a cloud server, to prove to a verifier that it is actually storing a data owner’s data honestly. To date, a number of RDIC protocols have been proposed in the literature, but almost all the constructions suffer from the issue of a complex key management, that is, they rely on the expensive public key infrastructure (PKI), which might hinder the deployment of RDIC in practice. In this paper, we propose a new construction of identity-based (ID-based) RDIC protocol by making use of key-homomorphic cryptographic primitive to reduce the system complexity and the cost for establishing and managing the public key authentication framework in PKI based RDIC schemes. We formalize ID-based RDIC and its security model including security against a malicious cloud server and zero knowledge privacy against a third party verifier. We then provide a concrete construction of ID-based RDIC scheme which leaks no information of the stored files to the verifier during the RDIC process. The new construction is proven secure against the malicious server in the generic group model and achieves zero knowledge privacy against a verifier. Extensive security analysis and implementation results demonstrate that the proposed new protocol is provably secure and practical in the real-world applications. ; This work is supported by the National Natural Science Foundation of China (61501333,61300213,61272436,61472083), Fok Ying Tung Education Foundation (141065), Program for New Century Excellent Talents in Fujian University (JA14067