Dissemin is shutting down on January 1st, 2025

Published in

2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)

DOI: 10.1109/eeeic.2016.7555681

Links

Tools

Export citation

Search in Google Scholar

Optimal power flow for technically feasible energy management systems in islanded microgrids

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents a combined optimal energy and power flow management for islanded microgrids. The highest control level in this case will provide a feasible and optimized operating point around the economic optimum. In order to account for both unbalanced and balanced loads, the optimal power flow is carried out using a Glow-worm Swarm Optimizer. The control level is organized into two different sub-levels, the highest of which accounts for minimum cost operation and the lowest one solving the optimal power flow and devising the set points of inverter interfaced generation units and rotating machines with a minimum power loss. A test has been carried out for 6 bus islanded microgrids to show the efficiency and feasibility of the proposed technique.