Published in

European Respiratory Society, European Respiratory Journal, 5(43), p. 1338-1346

DOI: 10.1183/09031936.00100313

Links

Tools

Export citation

Search in Google Scholar

Best lung function equations for the very elderly selected by survival analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We evaluated which equations best predicted the lung function of a cohort of nonagenarians based on which best accounted for subsequent survival.In 1998, we measured lung function, grip strength and dementia score (Mini Mental State Examination (MMSE)) in a population-based sample of 2262 Danes born in 1905. Mortality was registered to 2011 when only five (0.2%) subjects were alive. In half the cohort, we recorded forced expiratory volume in 1 s (FEV1).Complete data were available in 592 subjects with results expressed as standardised residuals (SR) using various prediction equations. Cox proportional hazard regression found lower FEV1SR was a predictor of mortality having controlled for MMSE, grip strength and sex. The US National Health and Nutrition Examination Survey (NHANES) III (1999) equations gave a better spread of median survival by FEV1SR quartile: 3.94, 3.65, 3.51 and 2.61 years with a hazard ratio for death of 1, 1.16, 1.32 and 1.60 respectively, compared with equations derived with the inclusion of elderly subjects.We conclude that extrapolating from NHANES III equations to predict lung function in nonagenarians gave better survival predictions from spirometry than when employing equations derived using very elderly subjects with possible selection bias. These findings can help inform how future lung function equations for the elderly are derived.