Published in

American Chemical Society, Chemistry of Materials, 12(28), p. 4467-4475, 2016

DOI: 10.1021/acs.chemmater.6b01673

Links

Tools

Export citation

Search in Google Scholar

Unraveling the Origin of Visible Light Capture by Core-Shell TiO2 Nanotubes

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A black TiO2 nanotube (NT) heterostructure with an anatase-core and an amorphous-shell has been synthesized by NH3 annealing of amorphous NT grown by the anodization of a Ti substrate. Remarkable photoabsorption behavior of these black TiO2 NTs is observed: strong absorption throughout the entire optical wavelength region from ultraviolet to near-infrared. X-ray absorption near-edge structure (XANES), X-ray photoelectron spectroscopy (XPS) and resonant inelastic X-ray scattering (RIXS) have been used to elucidate the origin of this spectacular light capture phenomenon. Surface-sensitive XANES recorded in total electron yield and XPS show that the surface layer is amorphous with a chemical composition approaching that of Ti4O7. Bulk-sensitive XANES using X-ray partial fluorescence yield and Ti 2p RIXS confirm the presence of a rich amount of Ti3+ in the crystalline bulk (core of the NT with anatase structure) of black TiO2 NTs, which exhibits a dispersive d-d energy loss at ∼2 eV corresponding to the broad visible light absorption at ∼600 nm. Our results suggest that the extraordinary photoabsorption behavior of these black TiO2 NTs is due to the stabilization of Ti3+ in this special N-doped core–shell assembly having structure varying between TiO2 (bulk anatase) and Ti4O7 (surface, amorphous). ; 補正完畢