Links

Tools

Export citation

Search in Google Scholar

Implementation and Comparison of Efficient 16-Bit SQRT CSLA Using Parity Preserving Reversible Gate

Published in 2016 by Rupali Patel, Khan Mk
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In Very Large Scale Integration (VLSI) outlines, Carry Select Adder (CSLA) is one of the quickest adder utilized as a part of numerous data processing processors to perform quick number crunching capacities. In this paper we proposed the design of SQRT CSLA using parity preserving reversible gate (P2RG). Reversible logic is emerging field in today VLSI design. In conventional circuits, the logic gates such as AND gate, OR gate is irreversible in nature and computing with irreversible logic results in energy dissipation. This problem can be circumvented by using reversible logic. In ideal condition, the reversible logic gate produces zero power dissipation. The proposed design is efficient in terms of delay as compare to irreversible SQRT CSLA. The simulation is done using Xilinx.