Links

Tools

Export citation

Search in Google Scholar

Failure of sucrose replacement with the non-nutritive sweetener erythritol to alter GLP-1 or PYY release or test meal size in lean or obese people

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Other ; This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.appet.2016.09.009 ; Abstract ; There is considerable interest in the effect of foods containing high intensity sweeteners on satiation. However, less is known about low-calorie bulk sweeteners such as erythritol. In this randomized three-way crossover study, we studied 10 lean and 10 obese volunteers who consumed three test meals on separate occasions: (a) control sucrose meal; (b) isovolumic meal with partial replacement of sucrose by erythritol; (c) isocaloric meal which contained more erythritol but equivalent calories to the control meal. We measured gut hormone levels, hunger and satiety scores, $\textit{ad libitum}$ food intake, sucrose preference and intake after the manipulations. There was a greater post-prandial excursion in glucose and insulin levels after sucrose than after the erythritol meals. There was no difference in GLP-1/PYY levels or subsequent energy intake and sucrose preference between sucrose control and isovolumic erythritol meals. In lean (but not obese) participants, hunger decreased to a greater extent after the isocaloric erythritol meal compared to the control meal (p = 0.003) reflecting the larger volume of this meal. Replacing sucrose with erythritol leads to comparable hunger and satiety scores, GLP-1 and PYY levels, and subsequent sucrose preference and intake. ; Other ; Wellcome Trust, National Institute for Health Research Cambridge Biomedical Research Centre, Bernard Wolfe Health Neuroscience Fund, Swiss National Science Foundation (Grant IDs: PBLAP3-145870, P3SMP3-155318), NeuroFAST consortium, European Union's Seventh Framework Programme (FP7/ 2007e2013) Grant ID: 245009), Cargill, Sas van Gent, The Netherlands