Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Korean Society of Environmental Engineers Thermal Formation of Polycyclic Aromatic Hydrocarbons from

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to 950°C. Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD π-bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond β-scission, or C-C bond β-scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond β-scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond β-scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond β-scission leading to naphthalene is predominant at high temperatures.