Published in

2016 European Control Conference (ECC)

DOI: 10.1109/ecc.2016.7810373

Links

Tools

Export citation

Search in Google Scholar

Application of the Continuous-Discrete Extended Kalman Filter for Fault Detection in Continuous Glucose Monitors for Type 1 Diabetes

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The purpose of this study is the online detection of faults and anomalies of a continuous glucose monitor (CGM). We simulated a type 1 diabetes patient using the Medtronic virtual patient model. The model is a system of stochastic differential equations and includes insulin pharmacokinetics, insulin-glucose interaction, and carbohydrate absorption. We simulated and detected two types of CGM faults, i.e., spike and drift. A fault was defined as a CGM value in any of the zones C, D, and E of the Clarke error grid analysis classification. Spike was modelled by a binomial distribution, and drift was modelled by a Gaussian random walk. We used a continuous-discrete extended Kalman filter for the fault detection, based on the statistical tests of the filter innovation and the 90-min prediction residuals of the sensor measurements. The spike detection had a sensitivity of 93% and a specificity of 100%. Also, the drift detection had a sensitivity of 80% and a specificity of 85%. Furthermore, with 100% sensitivity the proposed method was able to detect if the drift overestimates or underestimates the interstitial glucose concentration.