Published in

European Geosciences Union, Biogeosciences, 17(13), p. 5043-5056, 2016

DOI: 10.5194/bg-13-5043-2016

Links

Tools

Export citation

Search in Google Scholar

A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Wetlands are the largest global natural methane (CH 4 ) source, and emissions between 50 and 70° N latitude contribute 10–30 % to this source. Predictive capability of land models for northern wetland CH 4 emissions is still low due to limited site measurements, strong spatial and temporal variability in emissions, and complex hydrological and biogeochemical dynamics. To explore this issue, we compare wetland CH 4 emission predictions from the Community Land Model 4.5 (CLM4.5-BGC) with site- to regional-scale observations. A comparison of the CH 4 fluxes with eddy flux data highlighted needed changes to the model's estimate of aerenchyma area, which we implemented and tested. The model modification substantially reduced biases in CH 4 emissions when compared with CarbonTracker CH 4 predictions. CLM4.5 CH 4 emission predictions agree well with growing season (May–September) CarbonTracker Alaskan regional-level CH 4 predictions and site-level observations. However, CLM4.5 underestimated CH 4 emissions in the cold season (October–April). The monthly atmospheric CH 4 mole fraction enhancements due to wetland emissions are also assessed using the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model coupled with daily emissions from CLM4.5 and compared with aircraft CH 4 mole fraction measurements from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) campaign. Both the tower and aircraft analyses confirm the underestimate of cold-season CH 4 emissions by CLM4.5. The greatest uncertainties in predicting the seasonal CH 4 cycle are from the wetland extent, cold-season CH 4 production and CH 4 transport processes. We recommend more cold-season experimental studies in high-latitude systems, which could improve the understanding and parameterization of ecosystem structure and function during this period. Predicted CH 4 emissions remain uncertain, but we show here that benchmarking against observations across spatial scales can inform model structural and parameter improvements.