Published in

Elsevier, Renewable Energy, (99), p. 437-442

DOI: 10.1016/j.renene.2016.07.032

Links

Tools

Export citation

Search in Google Scholar

Methanol dehydrogenation and oxidation on Pt 1–X Ni X /CNTs at low temperature: Effect of Ni addition

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SSCI-VIDE+ECI2D+JRD:GBE:GAN ; International audience ; This study reports the effect on catalytic activity resulting from Ni incorporation in Pt nanoparticles supported on carbon nanotubes (CNTs) for electrochemical methanol oxidation at low temperature in acidic conditions. Chemical composition, morphology and structure of the Pt1-XNiX/CNTs (X = 0, 0.1, 0.2, 0.3, 0.4, 0.5) catalysts were studied by EDS, SEM, XRD, TEM and TGA. The catalytic activity of the prepared materials in methanol electro-oxidation reaction was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The results of catalytic activity of the nanostructured materials showed a volcano-type relationship between the Ni relative concentration current density. The enhancement of catalytic activity was attributed to changes in surface electronic structure of Pt nanoparticles that impacted in an increment of active sites for methanol dehydrogenation and oxidation processes. On the other hand, high concentration of Ni (concentration >= 30 at.%) in Pt nanoparticles caused a substantial decrease of the catalytic activity due to a depletion of active sites for the methanol dehydrogenation process. The highest catalytic activity was observed when the Ni relative concentration reaches 30 at.%. (C) 2016 Elsevier Ltd. All rights reserved.