Published in

BioMed Central, Genome Medicine, 1(8), 2016

DOI: 10.1186/s13073-016-0361-5

Links

Tools

Export citation

Search in Google Scholar

Genome-wide methylation profiling of ovarian cancer patient-derived xenografts treated with the demethylating agent decitabine identifies novel epigenetically regulated genes and pathways

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background In high-grade serous ovarian cancer (HGSOC), intrinsic and/or acquired resistance against platinum-containing chemotherapy is a major obstacle for successful treatment. A low frequency of somatic mutations but frequent epigenetic alterations, including DNA methylation in HGSOC tumors, presents the cancer epigenome as a relevant target for innovative therapy. Patient-derived xenografts (PDXs) supposedly are good preclinical models for identifying novel drug targets. However, the representativeness of global methylation status of HGSOC PDXs compared to their original tumors has not been evaluated so far. Aims of this study were to explore how representative HGSOC PDXs are of their corresponding patient tumor methylome and to evaluate the effect of epigenetic therapy and cisplatin on putative epigenetically regulated genes and their related pathways in PDXs. Methods Genome-wide analysis of the DNA methylome of HGSOC patients with their corresponding PDXs, from different generations, was performed using Infinium 450 K methylation arrays. Furthermore, we analyzed global methylome changes after treatment of HGSOC PDXs with the FDA approved demethylating agent decitabine and cisplatin. Findings were validated by bisulfite pyrosequencing with subsequent pathway analysis. Publicly available datasets comprising HGSOC patients were used to analyze the prognostic value of the identified genes. Results Only 0.6–1.0 % of all analyzed CpGs (388,696 CpGs) changed significantly ( p