Published in

American Institute of Physics, Applied Physics Letters, 13(109), p. 132104, 2016

DOI: 10.1063/1.4963836

Links

Tools

Export citation

Search in Google Scholar

Band gap reduction in InNxSb1-x alloys : optical absorption, k · P modeling, and density functional theory

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Using infrared absorption, the room temperature band gap of InSb is found to reduce from 174 (7.1 μm) to 85 meV (14.6 μm) upon incorporation of up to 1.13% N, a reduction of ∼79 meV/%N. The experimentally observed band gap reduction in molecular-beam epitaxial InNSb thin films is reproduced by a five band k ⋅· P band anticrossing model incorporating a nitrogen level, EN, 0.75 eV above the valence band maximum of the host InSb and an interaction coupling matrix element between the host conduction band and the N level of β = 1.80 eV. This observation is consistent with the presented results from hybrid density functional theory.