Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Plant Physiology, 3(164), p. 1389-1400, 2014

DOI: 10.1104/pp.113.230383

Links

Tools

Export citation

Search in Google Scholar

An Arabidopsis Stomatin-Like Protein Affects Mitochondrial Respiratory Supercomplex Organization

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Stomatins belong to the band-7 protein family, a diverse group of conserved eukaryotic and prokaryotic membrane proteins involved in the formation of large protein complexes as protein-lipid scaffolds. The Arabidopsis (Arabidopsis thaliana) genome contains two paralogous genes encoding stomatin-like proteins (SLPs; AtSLP1 and AtSLP2) that are phylogenetically related to human SLP2, a protein involved in mitochondrial fusion and protein complex formation in the mitochondrial inner membrane. We used reverse genetics in combination with biochemical methods to investigate the function of AtSLPs. We demonstrate that both SLPs localize to mitochondrial membranes. SLP1 migrates as a large (approximately 3 MDa) complex in blue-native gel electrophoresis. Remarkably, slp1 knockout mutants have reduced protein and activity levels of complex I and supercomplexes, indicating that SLP affects the assembly and/or stability of these complexes. These findings point to a role for SLP1 in the organization of respiratory supercomplexes in Arabidopsis.