Published in

Optica, Optics Express, 21(24), p. 23677, 2016

DOI: 10.1364/oe.24.023677

Links

Tools

Export citation

Search in Google Scholar

Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hybrid perovskite materials have considerable potential for light emitting devices such as LEDs and lasers. We combine solution processed CH3NH3PbI3 perovskite with UV nanoimprinted polymer gratings to fabricate distributed feedback (DFB) lasers. The lead acetate deposition route is shown to be an effective method for fabricating low-loss waveguides (loss coefficient ~6 cm-1) and highly compatible with the polymer grating substrates. The nanoimprinted perovskite exhibited single-mode band-edge lasing, confirmed by angle-dependent transmission measurements. Depending on the excitation pulse duration the lasing threshold shows a value of 110 μJ/cm2 under nanosecond pumping and 4 μJ/cm2 under femtosecond pumping. We demonstrate further that this laser has excellent stability with a lifetime of 10*8 pulses.