Published in

American Chemical Society, Journal of the American Chemical Society, 8(135), p. 2963-2966, 2013

DOI: 10.1021/ja400082x

Links

Tools

Export citation

Search in Google Scholar

Enantioselective Synthesis of Atropisomeric Benzamides through Peptide-Catalyzed Bromination

Journal article published in 2013 by Kimberly T. Barrett, Scott J. Miller ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the enantioselective synthesis of atropisomeric benzamides employing catalytic electrophilic aromatic substitution reactions involving bromination. The catalyst is a simple tetrapeptide bearing a tertiary amine that may function as a Brønsted base. A series of tri- and dibrominations were accomplished for a range of compounds bearing differential substitution patterns. Tertiary benzamides represent appropriate substrates for the reaction since they exhibit sufficiently high barriers to racemization after ortho functionalization. Mechanism-driven experiments provided some insight into the basis for selectivity. Examination of the observed products at low conversion suggested that the initial catalytic bromination may be regioselective and stereochemistry-determining. A complex between the catalyst and substrate was observed by NMR spectroscopy, revealing a specific association. Finally, the products of these reactions may be subjected to regioselective metal-halogen exchange and trapping with I(2), setting the stage for utility.